jueves, 3 de diciembre de 2009

USB
El Universal Serial Bus (bus universal en serie) o Conductor Universal en Serie (CUS), abreviado comúnmente USB, es un puerto que sirve para conectar periféricos a una computadora. Fue creado en 1996 por siete empresas: IBM, Intel, Northern Telecom, Compaq, Microsoft, Digital Equipment Corporation y NEC.
El diseño del USB tenía en mente eliminar la necesidad de adquirir tarjetas separadas para poner en los puertos bus ISA o PCI, y mejorar las capacidades plug-and-play permitiendo a esos dispositivos ser conectados o desconectados al sistema sin necesidad de reiniciar. Sin embargo, en aplicaciones donde se necesita ancho de banda para grandes transferencias de datos, o si se necesita una latencia baja, los buses PCI o PCIe salen ganando. Igualmente sucede si la aplicación requiere de robustez industrial. A favor del bus USB, cabe decir que cuando se conecta un nuevo dispositivo, el servidor lo enumera y agrega el software necesario para que pueda funcionar.


PUERTO SERIAL
Un puerto serie o puerto serial es una interfaz de comunicaciones de datos digitales, frecuentemente utilizado por computadoras y periféricos, en donde la información es transmitida bit a bit enviando un solo bit a la vez, en contraste con el puerto paralelo que envía varios bits simultáneamente. La comparación entre la transmisión en serie y en paralelo se puede explicar usando una analogía con las carreteras. Una carretera tradicional de un sólo carril por sentido sería como la transmisión en serie y una autovía con varios carriles por sentido sería la transmisión en paralelo, siendo los vehículos los bits que circulan por el cable.
PUERTO PARALELO
Un puerto paralelo es una interfaz entre una computadora y un periférico cuya principal característica es que los bits de datos viajan juntos, enviando un paquete de byte a la vez. Es decir, se implementa un cable o una vía física para cada bit de datos formando un bus. Mediante el puerto paralelo podemos controlar también periféricos como focos, motores entre otros dispositivos, adecuados para automatización.
El cable paralelo es el conector físico entre el puerto paralelo y el dispositivo periférico. En un puerto paralelo habrá una serie de bits de control en vías aparte que irán en ambos sentidos por caminos distintos.
En contraposición al puerto paralelo está el puerto serie, que envía los datos bit a bit por el mismo hilo.

EL ZOCALO DEL CPU
El zócalo o socket (en inglés) es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las consolas de videojuegos.
Existen variantes desde 40 conexiones para integrados pequeños, hasta mas de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).

LA PILA
Una pila eléctrica es un dispositivo que convierte energía química en energía eléctrica por un proceso químico transitorio, tras de lo cual cesa su actividad y han de renovarse sus elementos constituyentes, puesto que sus características resultan alteradas durante el mismo. Se trata de un generador primario. Esta energía resulta accesible mediante dos terminales que tiene la pila, llamados polos, electrodos o bornes. Uno de ellos es el polo negativo o ánodo y el otro es el polo positivo o cátodo.
Véase también:
Acumulador eléctrico
En Argentina la pila volta es una pila común. En castellano ha venido siendo costumbre llamarla así, mientras que al dispositivo recargable o acumulador, se ha venido llamando batería. Tanto pila como batería son términos provenientes de los primeros tiempos de la
electricidad, en los que se juntaban varios elementos o celdas —en el primer caso uno encima de otro, "apilados", y en el segundo adosados lateralmente, "en batería"— como se sigue haciendo actualmente, para así aumentar la magnitud de los fenómenos eléctricos y poder estudiarlos sistemáticamente. De esta explicación se desprende que cualquiera de los dos nombres serviría para cualquier tipo, pero la costumbre ha fijado la distinción.
La estructura fundamental de una pila consiste en piezas de dos
metales diferentes introducidas en un líquido conductor de la electricidad o electrolito.
Principios de funcionamiento:
Aunque la apariencia de cada una de estas celdas sea simple, la explicación de su funcionamiento dista de serlo y motivó una gran actividad científica en los siglos XIX y XX, así como diversas teorías.
Las pilas básicamente son dos
electrodos metálicos sumergidos en un líquido, sólido o pasta que se llama electrolito. El electrólito es un conductor de iones.
Cuando los electrodos reaccionan con el electrolito, en uno de los electrodos (el
ánodo) se producen electrones (oxidación), y en el otro (cátodo) se produce un defecto de electrones (reducción). Cuando los electrones sobrantes del ánodo pasan al cátodo a través de un conductor externo a la pila se produce una corriente eléctrica.
Como vemos, en el fondo Se trata de una reacción de oxidación y otra de reducción que se producen simultáneamente.

TIPOS DE RANURAS DE EXPANSION DE UN PC.
TIPOS:
Ranuras ISA:

Las ranuras ISA (Industry Standard Architecture) hacen su aparición de la mano de IBM en 1980 como ranuras de expansión de 8bits (en la imagen superior), funcionando a 4.77Mhz (que es la velocidad de pos procesadores Intel 8088). Se trata de un slot de 62 contactos (31 por cada lado) y 8.5cm de longitud. Su verdadera utilización empieza en 1983, conociéndose como XT bus architecture. En el año 1984 se actualiza al nuevo estándar de 16bits, conociéndose como AT bus architecture.


En este caso se trata de una ranura (en realidad son dos ranuras unidas) de 14cm de longitud. Básicamente es un ISA al que se le añade un segundo conector de 36 contactos (18 por cada lado). Estas nuevas ranuras ISA trabajan a 16bits y a 8Mhz (la velocidad de los Intel 80286).

Ranuras EISA:

En 1988 nace el nuevo estándar EISA (Extended Industry Standard Architecture), patrocinado por el llamado Grupo de los nueve (AST, Compaq, Epson, Hewlett-Packard, NEC Corporation, Olivetti, Tandy, Wyse y Zenith), montadores de ordenadores clónicos, y en parte forzados por el desarrollo por parte de la gran gigante (al menos en aquella época) IBM, que desarrolla en 1987 el slot MCA (Micro Channel Architecture) para sus propias máquinas. Las diferencias más apreciables con respecto al bus ISA AT son: - Direcciones de memoria de 32 bits para CPU, DMA, y dispositivos de bus master. - Protocolo de transmisión síncrona para transferencias de alta velocidad. - Traducción automática de ciclos de bus entre maestros y esclavos EISA e ISA. - Soporte de controladores de periféricos maestros inteligentes. - 33 MB/s de velocidad de transferencia para buses maestros y dispositivos DMA. - Interrupciones compartidas. - Configuración automática del sistema y las tarjetas de expansión (el conocido P&P). Los slot EISA tuvieron una vida bastante breve, ya que pronto fueron sustituidos por los nuevos estándares VESA y PCI.

Ranuras VESA:

Movido más que nada por la necesidad de ofrecer unos gráficos de mayor calidad (sobre todo para el mercado de los videojuegos, que ya empezaba a ser de una importancia relevante), nace en 1989 el bus VESA El bus VESA (Video Electronics Standards Association) es un tipo de bus de datos, utilizado sobre todo en equipos diseñados para el procesador Intel 80486. Permite por primera vez conectar directamente la tarjeta gráfica al procesador. Este bus es compatible con el bus ISA (es decir, una tarjeta ISA se puede pinchar en una ranura VESA), pero mejora la calidad y la respuesta de las tarjetas gráficas, solucionando el problema de la insuficiencia de flujo de datos que tenían las ranuras ISA y EISA. Su estructura consistía en una extensión del ISA de 16 bits. Las tarjetas de expansión VESA eran enormes, lo que, junto a la aparición del bus PCI, mucho más rápido en velocidad de reloj y con menor longitud y mayor versatilidad, hizo desaparecer al VESA. A pesar de su compatibilidad con las tarjetas anteriores, en la práctica, su uso se limitó casi exclusivamente a tarjetas gráficas y a algunas raras tarjetas de expasión de memoria.
Ranuras PCI:

En el año 1990 se produce uno de los avances mayores en el desarrollo de los ordenadores, con la salida del bus PCI (Peripheral Component Interconnect). Se trata de un tipo de ranura que llega hasta nuestros días (aunque hay una serie de versiones), con unas especificaciones definidas, un tamaño menor que las ranuras EISA (las ranuras PCI tienen una longitud de 8.5cm, igual que las ISA de 8bits), con unos contactos bastante más finos que éstas, pero con un número superior de contactos (98 (49 x cara) + 22 (11 x cara), lo que da un total de 120 contactos). Con el bus PCI por primera vez se acuerda también estandarizar el tamaño de las tarjetas de expansión (aunque este tema ha sufrido varios cambios con el tiempo y las necesidades). El tamaño inicial acordado es de un alto de 107mm (incluida la chapita de fijación, o backplate), por un largo de 312mm. En cuanto al backplate, que se coloca al lado contrario que en las tarjetas EISA y anteriores para evitar confusiones, también hay una medida estándar (los ya nombrados 107mm), aunque hay una medida denominada de media altura, pensada para los equipos extraplanos. Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son: - PCI 1.0: Primera versión del bus PCI. Se trata de un bus de 32bits a 16Mhz. - PCI 2.0: Primera versión estandarizada y comercial. Bus de 32bits, a 33MHz - PCI 2.1: Bus de 32bist, a 66Mhz y señal de 3.3 voltios - PCI 2.2: Bus de 32bits, a 66Mhz, requiriendo 3.3 voltios. Transferencia de hasta 533MB/s - PCI 2.3: Bus de 32bits, a 66Mhz. Permite el uso de 3.3 voltios y señalizador universal, pero no soporta señal de 5 voltios en las tarjetas. - PCI 3.0: Es el estándar definitivo, ya sin soporte para 5 voltios.

Ranuras PCIX:


Las ranuras PCIX (OJO, no confundir con las ranuras PCIexpress) salen como respuesta a la necesidad de un bus de mayor velocidad. Se trata de unas ranuras bastante más largas que las PCI, con un bus de 66bits, que trabajan a 66Mhz, 100Mhz o 133Mhz (según versión). Este tipo de bus se utiliza casi exclusivamente en placas base para servidores, pero presentan el grave inconveniente (con respecto a las ranuras PCIe) de que el total de su velocidad hay que repartirla entre el número de ranuras activas, por lo que para un alto rendimiento el número de éstas es limitado. En su máxima versión tienen una capacidad de transferencia de 1064MB/s. Sus mayores usos son la conexión de tarjetas Ethernet Gigabit, tarjetas de red de fibra y tarjetas controladoras RAID SCSI 320 o algunas tarjetas controladoras RAID SATA.

Ranuras AGP:
El puerto AGP (Accelerated Graphics Port) es desarrollado por Intel en 1996 como puerto gráfico de altas prestaciones, para solucionar el cuello de botella que se creaba en las gráficas PCI. Sus especificaciones parten de las del bus PCI 2.1, tratándose de un bus de 32bits. Con el tiempo has salido las siguientes versiones: - AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V. - AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V. - AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas. - AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V. Se utiliza exclusivamente para tarjetas gráficas y por su arquitectura sólo puede haber una ranura AGP en la placa base. Se trata de una ranura de 8cm de longitud, instalada normalmente en principio de las ranuras PCI (la primera a partir del Northbridge), y según su tipo se pueden deferenciar por la posición de una pestaña de control que llevan.





Las primeras (AGP 1X y 2X) llevaban dicha pestaña en la parte más próxima al borde de la placa base (imagen 1), mientras que las actuales (AGP 8X compatibles con 4X) lo llevan en la parte más alejada de dicho borde (imagen 2). Existen dos tipos más de ranuras: Unas que no llevan esta muesca de control (imagen 3) y otras que llevan las dos muescas de control. En estos casos se trata de ranuras compatibles con AGP 1X, 2X y 4X (las ranuras compatibles con AGP 4X - 8X llevan siempre la pestaña de control). Es muy importante la posición de esta muesca, ya que determina los voltajes suministrados, impidiendo que se instalen tarjetas que no soportan algunos voltajes y podrían llegar a quemarse. Con la aparición del puerto PCIe en 2004, y sobre todo desde 2006, el puerto AGP cada vez está siendo más abandonado, siendo ya pocas las gráficas que se fabrican bajo este estándar. A la limitación de no permitir nada más que una ranura AGP en placa base se suma la de la imposibilidad (por diferencia de velocidades y bus) de usar en este puerto sistemas de memoria gráfica compartida, como es el caso de TurboCaché e HyperMemory.

Ranuras PCIe:


Las ranuras PCIe (PCI-Express) nacen en 2004 como respuesta a la necesidad de un bus más rápido que los PCI o los AGP (para gráficas en este caso). Su empleo más conocido es precisamente éste, el de slot para tarjetas gráficas (en su variante PCIe x16), pero no es la única versión que hay de este puerto, que poco a poco se va imponiendo en el mercado, y que, sobre todo a partir de 2006, ha desbancado prácticamente al puerto AGP en tarjetas gráficas. Entre sus ventajas cuenta la de poder instalar dos tarjetas gráficas en paralelo (sistemas SLI o CrossFire) o la de poder utilizar memoria compartida (sistemas TurboCaché o HyperMemory), además de un mayor ancho de banda, mayor suministro de energía (hasta 150 watios). Este tipo de ranuras no debemos confundirlas con las PCIX, ya que mientras que éstas son una extensión del estándar PCI, las PCIe tienen un desarrollo totalmente diferente. El bus de este puerto está estructurado como enlaces punto a punto, full-duplex, trabajando en serie. En PCIe 1.1 (el más común en la actualidad) cada enlace transporta 250 MB/s en cada dirección. PCIE 2.0 dobla esta tasa y PCIE 3.0 la dobla de nuevo. Cada slot de expansión lleva 1, 2, 4, 8, 16 o 32 enlaces de datos entre la placa base y las tarjetas conectadas. El número de enlaces se escribe con una x de prefijo (x1 para un enlace simple y x16 para una tarjeta con dieciséis enlaces los tipos de ranuras PCIe que más se utilizan en la actualidad son los siguientes: - PCIe x1: 250MB/s - PCIe x4: 1GB/s (250MB/s x 4) - PCIe x16: 4GB/s (250MB/s x 16) Como podemos ver, las ranuras PCIe utilizadas para tarjetas gráficas (las x16) duplican (en su estándar actual, el 1.1) la velocidad de transmisión de los actuales puertos AGP. Es precisamente este mayor ancho de banda y velocidad el que permite a las nuevas tarjetas gráficas PCIe utilizar memoria compartida, ya que la velocidad es la suficiente como para comunicarse con la RAM a una velocidad aceptable para este fin. Estas ranuras se diferencian también por su tamaño. En la imagen superior podemos ver (de arriba abajo) un puerto PCIe x4, un puerto PCIe x16, un puerto PCIe x1 y otro puerto PCIe x16. En la parte inferior se observa un puerto PCI, lo que nos puede servir de dato para comparar sus tamaños. Cada vez son más habituales las tarjetas que utilizan este tipo de ranuras, no sólo tarjetas gráficas, sino de otro tipo, como tarjetas WiFi, PCiCard, etc. Incluso, dado que cada vez se instalan menos ranuras PCI en las placas base, existen adaptadores PCIe x1 - PCI, que facilitan la colocación de tarjetas PCI (eso sí, de perfin bajo) en equipos con pocas ranuras de éste tipo disponibles Por último, en la imagen inferior podemos ver el tamaño de diferentes tipos de puertos, lo que también nos da una idea de la evolución de éstos.



En fin, espero que este tutorial les sirva de utilidad a la hora de identificar una ranura de expansión y de saber las propiedades que pueden tener.


QUE ES Y QUE FUNCIÓN TIENE EL CHIPSET

CONCEPTO
A menudo hemos oído hablar del Chipset de la placa base. En este tutorial vamos a tratar de ver qué es el chipset y qué función desempeña dentro de un ordenador.Podemos definir al Chipset como un conjunto de microprocesadores especialmente diseñados para funcionar como si fueran una única unidad y para desempeñar una o varias funciones
En una placa base actual suele estar formado por varios conjuntos de microprocesadores, cada uno de los cuales tiene una misión específica, pero que funcionan en conjunto, ordenando además la comunicación entre el resto de elementos del ordenador.
Los más habituales son el Northbridge, el Southbridge, el Super I/O, la controladora IDE, la controladora SATA y en las placas actuales la controladora de sonido y la controladora Ethernet.
Cada uno de estos elementos que conforman el chipset de la placa base funcionan independientemente unos de otros, pero estrechamente relacionados.
Vamos a ver qué parte del ordenador controla cada uno de ellos:
Northbridge:

Este componente del chipset es quizás el de mayor importancia. Es de reciente aparición, ya que no existía hasta la aparición de las placas ATX, y debe su nombre a su situación dentro de la placa, situado en la parte superior (norte) de estas, cerca del slot del procesador y de los bancos de memoria.

Es el encargado de gestionar la memoria RAM, los puertos gráficos (AGP) y el acceso al resto de componentes del chipset, así como la comunicación entre estos y el procesador. Los primeros Northbridge también gestionaban los accesos a los puertos PCI, pero esta labor ha pasado con el tiempo a depender del Southbridge. A destacar en este aspecto la innovación que supuso (y supone) la tecnología utilizada por AMD, en la que la memoria es gestionada directamente por el procesador, descargando al Northbridge de esta labor y permitiendo una gestión de la memoria más rápida y directa.Del Northbridge depende directamente el tipo de procesador que admitirá nuestra placa base, la frecuencia FSB, el tipo y frecuencia de las memorias y el tipo de adaptador gráfico.



Actualmente tienen un bus de datos de 64 bit y unas frecuencias de entre 400 Mhz y 1 Ghz (en las placas para AMD64). Dado este alto rendimiento, generan una alta temperatura, por lo que suelen tener algún tipo de refrigeración, ya sea activa o pasiva.
Southbridge:

Conectado al procesador mediante el Northbridge, es el chip encargado de controlar la práctica totalidad de elementos I/O (Input/Output), por lo que también se le conoce
como Concentrador de controladores de Entrada / Salida o, en inglés, I/O Controller Hub (ICH).
Este chip es el encargado de controlar una larga serie de dispositivos. Los principales son:
- Bus PCI.
- Bus ISA.
- SM Bus.
- Controlador DMA.
- Controlador de Interrupciones.
- Controlador IDE (SATA o PATA).
- Puente LPC.
- Reloj en Tiempo Real.
- Administración de potencia eléctrica - Power management (APM y ACPI)
- BIOS.
- Interfaz de sonido AC97.
- Soporte Ethernet.
- Soporte RAID.
- Soporte USB





LA MEMORIA CACHE
PARA QUÉ SIRVE
Para empezar, digamos que la caché no es sino un tipo de memoria del ordenador; por tanto, en ella se guardarán datos que el ordenador necesita para trabajar. ¿Pero no era eso la RAM?, preguntará usted. Bueno, en parte sí. A decir verdad, la memoria principal del ordenador (la RAM, los famosos 8, 16, 32 ó 64 "megas") y la memoria caché son básicamente iguales en muchos aspectos; la diferencia está en el uso que se le da a la caché.
Debido a la gran velocidad alcanzada por los microprocesadores desde el 386, la RAM del ordenador no es lo suficientemente rápida para almacenar y transmitir los datos que el microprocesador (el "micro" en adelante) necesita, por lo que tendría que esperar a que la memoria estuviera disponible y el trabajo se ralentizaría. Para evitarlo, se usa una memoria muy rápida, estratégicamente situada entre el micro y la RAM: la memoria caché.

Ésta es la base principal de la memoria caché: es muy rápida. ¿Cuánto es "muy rápida"? Bien, unas 5 ó 6 veces más que la RAM. Esto la encarece bastante, claro está, y ése es uno de los motivos de que su capacidad sea mucho menor que el de la RAM: un máximo en torno a 512 kilobytes (512 Kb), es decir, medio "mega", frente a 16 ó 32 megas de RAM. Además, este precio elevado la hace candidata a falsificaciones y timos.


EL TAMAÑO DE LA CACHÉ
Leído lo anterior, usted pensará: pues cuanto más grande, mejor. Cierto, pero no; o más bien, casi siempre sí. Aunque la caché sea de mayor velocidad que la RAM, si usamos una caché muy grande, el micro tardará un tiempo apreciable en encontrar el dato que necesita. Esto no sería muy importante si el dato estuviera allí, pero ¿y si no está? Entonces habrá perdido el tiempo, y tendrá que sumar ese tiempo perdido a lo que tarde en encontrarlo en la RAM.


Por tanto, la caché actúa como un resumen, una "chuleta" de los datos de la RAM, y todos sabemos que un resumen de 500 páginas no resulta nada útil. Se puede afirmar que, para usos normales, a partir de 1 MB (1024 Kb) la caché resulta ineficaz, e incluso pudiera llegar a ralentizar el funcionamiento del ordenador. El tamaño idóneo depende del de la RAM, y viene recogido en la siguiente tabla:

RAM (MB) Caché (Kb)
1 a 4
128 ó 256
4 a12 256
12 a32 512
más de 32 512 a 1024

Se debe hacer notar que muchos "chipsets" para Pentium, como los conocidos Intel "Tritón" VX o TX, no permiten cachear más de 64 MB de RAM; es decir, que a partir de esta cifra, ES COMO SI NO EXISTIERA Caché EN ABSOLUTO (0 Kb!!).Así que si necesita instalar más de 64 MB en una placa para Pentium, busque una placa que permita cachear más de esa cifra (como algunas -no todas- las que tienen chipsets "Tritón" HX). Para saber más sobre chipsets.